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ABSTRACT 

We study the phase transition properties of the nonlinear O(N) o-model 

in two dimensions when O(N) gauge interactions are included. With non 

zero gauge coupling, this theory exhibits a first order phase transition 

in the large N limit. The broken symmetry phase is stabilized by the 

Higgs mechanism and Goldstone bosons do not appear. 
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Recently Bardeen and Pearson’ have proposed a transverse lattice 

formulation of Quantum Chromodynamics.2 In this theory, color 

confinement is obtained when the vacuum is invariant under the transverse 

gauge symmetry. A quark-gluon phase, where color is not confined, can 

result if this symmetry is spontaneously broken. In this paper we will 

study some aspects of the mechanisms which are responsible for generating 

such a phase transition. 

The independent gauge degrees of freedom or the transverse lattice 

theory are associated with links on the transverse lattice. The longitudinal 

dynamics of a single transverse link consist of a nonlinear SU(3) x SU(3) 

o-model with SU(3) x SU(3) gauge interactions. For a single transverse 

link the longitudinal dynamics is two dimensional. As the transverse 

gauge symmetry is a local symmetry on the lattice, the phase transition 

properties of a single transverse link are relevant to the phase transition 

properties of the full gauge theory. 

We shall study a somewhat simpler though analogous version of the 

single link problem. The model consists of a two dimensional nonlinear 

O(N) o-model with O(N) gauge interactions. This theory has the advantage 

that the model may be systematically studied in the large N limit. The 

nonlinear o-model in 2 and 2 + E dimensions has recently been extensively 

studied by Brezin and Zinn-Justin3 and by Bardeen, Lee, and Shrock. 
4 

In this theory, spontaneous symmetry breaking can occur in 2 + E 

dimensions but only the symmetric phase can exist in 2 dimensions. 
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The basic result of our paper is that the broken symmetry phase can be 

stabilized when gauge interactions are introduced. The existence of 

non-trivial phase transition properties in two dimensions makes this theory 

interesting in its own right. 

The nonlinear O(N) o-model with gauge interactions is described 

by the Iagrangian 

c6?= +p$2 - $ (Gp y ij )2 (1) 

where { T} is an N component scalar field with the constraint G2 = f 
2 

0 . 

The gauge fields may be written as an antisymmetric tensor, { AP ij, 

i, j = 1 . ..N}. The covariant derivative is defined by 

(Dp4ji = ap4i + gApij 6j 

and the Yang-Mills field strength is given by 

G 
P ij =apAvij-a ” APij+gA A 

p lk Vkj +gA.A. Mk vik’ 

(2) 

(3) 

In two dimensions this theory is renormalizable with respect to the 

dimensionless coupling constant i/fo2, and superrenormalizable with 

respect to the gauge coupling constant, g2. 

This theory may be studied directly using the methods discussed 

in ref. 4. Since the nonlinear theory is renormalizable, we must be 

careful to preserve the symmetry structure of the theory in our calculation. 
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Dimensional regularization is not particularly convenient in this case 

as we would confront the necessity of including contributions from the 

transverse gauge fields. Instead, we choose to regularize the theory 

by considering the linear c-model in precisely two dimensions. The 

nonlinear theory is recovered as a limit of the linear theory. 5 

The linearized theory is described by the Lagrangian 

y= ;(D $1’ - ~ho(fo2 -T)’ 
P 

(41 

- $ (Gp vij)2 

A2 
where the constraint 4 = f O2 has been relaxed. The nonlinear model 

is obtained by taking the limit X0 -m with f 
2 

0 and g2 fixed. Since the 

nonlinear theory is renormalizable only a logarithmic dependence on 

X0 can occur which is absorbed in the renormalization of f 2 
0 ’ In the 

large N limit no such logarithms appear and the limit may be taken without 

the renormalization involving A o. 

The theory is most easily studied in the light cone gauge, Asij = 0, 

A+ = & (A0 * Ai). The gauge fields A+ij are dependent and may be 

eliminated in favor of a “Coulomb” interaction. In this gauge, the Lagrangian 

of Eq. (4) becomes 
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s4"? = $aw?j2 - ;AO(fo2 -$2J2 

- <tt~~aq) (- am2)-’ (4ia$j) 

where 8, = $8, * a4 ). 

We wish to consider the possibility of spontaneous symmetry breaking 

of the O(N) symmetry where the field,+, acquires a nonzero vacuum 

expectation value. The direction of the symmetry breaking may be rotated 

to any fixed axis. There remains an O(N - 1) symmetry. We rewrite 

the field, $, as a field, o, which can have a vacuum expectation value 

and fields {pi., iY.. . (N - 1 
1)) which have zero vacuum expectation value. 

We may probe the broken phase by adding a Lagrange multiplier, J, to 

force the u field to have a given expectation value, f. A spontaneously 

broken symmetry phase exists if f # 0 for J = 0 and if this phase has 

the lowest vacuum energy. The Lagrangian of Eq. (5) may be rewritten as 

2 = f (a@2 + $ (m2 -$ Ao(fo2 - o2 - ?2)2 + J( o - f) 

2 
- $- (d-ai)(- a 2)-i(6-~i) 

- ~(~i~-;)(-a_2)‘1(.i~-nj). 

(6) 

The large N limit of this theory is obtained by letting N +OI while 

holding AON, g2N, fo2/N, and f2/N fixed. In this limit, a Hartree 
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calculation of the CT and i; propagators becomes exact with the TI mass 

being determined self-consistently. 

The propagators may be computed usingthe Lagrangian of Eq. (6). 

r(‘)(P) = P2 +A f 2 -A <3a2 + iF2> 
CT 00 0 0 

+g2 c <(Q_ni)(-a- 
i 

2)-%ri5J>o 

+ 0(1/N) 

r;)(P) = P2 +AOfo2 - X0' a2 + ,r2> 
0 

+ g2 z <(~-"i)(-a-2)-1(~~~-)>o 
1 

(7) 

(8) 

The vacuum expectation value of the o field equation of motion may be 

used to determine the value of theLagrange multiplier, J, such that 

<u> 0 = f. We obtain the expression, 

0 = J + Aofo2 <a> o - x0< o(02 + g2)>, 

(9) 

+ g2 c <(E n.)(-a 2!-?+J PO -1 - 
i 
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The various vacuum expectation values in Eqs. (7, 8, 9) may be 

evaluated in leading N by using the full propagators for the u and 1~ fields. 

We obtain the following results: 

(a) <u>. = f 

(b) ‘rri>0 = o 

(c) .02>o = <u> 2+-L 
2 d2k(k2 - m 

(2a) 
,“I-’ 

II2 = f2 + (4J*logy 
m cl 

(d) <i;2>o = (N - I+- 
cm2 

d2k(k2 - mi12)-’ 

2 
= (N - i)(4r)&+ 

m ll 

2-1 .+ 
(e) <(SW-a ) (ua P - - - 0 

= - <lJ> 2-i 
(2d2 

dk(k2 - m :,-‘(k- + PJ2(k - P-)-2 

= -f2-i 
(21T12 

dk(k2 - m,2)-’ - 

= - f2 - (4*)-l log A2 1 
2 +- ll m 0 
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L 

= -(N-f+-- dk(k2 - mT2)-‘(k- + P-)2(k- - P-J 
-2 

Cd2 

2 
= -(N-1)(4,)-110g~+(N-1)/rr 

m TI 

(g) <03>o = h2 f3 + 3f (41)-i10gT 
m CT 

2 
(h) <&>o = f (N - 1)(4&’ log + 

m TI 

(i) 22 <(~'i)(-a_2)-i("i2i_u)>o 
i 

= f (-(N - 1) (4rr)-‘log - A22 +(N-i)h) . 
m T 

The divergent self energy integrals have been computed using a Wick 

rotation and a cutoff, A2. 

Using the results of Eq. (lo), we may compute all the large N 

contributions to Eqs. (7, 8, 9). The propagators are given by 

J?f\P2) = P2 - mo2, 

$2) 2 (P) = P2-m2 
TT TI 

where 
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2 2 -1 
m =-Af + + 

A2 
0 00 3Aof2 AoN(4rr) 1% 2 

m TI 

2 
+ g2N(4i,)-i log -+ -g2N/. , 

m lr 

mn2 = - AOf02 + AOf + AON(41r) -1 A2 
log 2 

m T 

2 
+ g2f2 + g2N(4rr)-i log + - g’N/rr 

m TI 

The lagrange multiplier is determined by the equation 

J = - A,,fo2f + AOf + fAON(4n) 
-1 A2 

log 2 
m 

?r 

2 
+ fg2N(4rr)-’ log+ -f g’N/rr 

m TI 

(12) 

2 
= f(m TF - g2f2). 

The Hartree calculation sums consistently in leading N all tadpole graphs 

(Fig. la), all cactus graphs (Fig. Ib), and all rainbow graphs (Fig. Ic). 

All other graphs are nonleading in the large N limit. 

2 
The II mass, mir , must be determined self-consistently from Eq. (11) 

and Eq. (12). In the case J = 0, there are two possible solutions corresponding 

to the symmetric phase, f = 0, and a spontaneously broken phase, f # 0. 
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In the symmetric phase we have f q 0. 

2 m =- 
ii Abfo2 + A,,N(4n)-’ log 3 

lr 

+ g2N(40) 
-1 

1% 
A2 

T-g2N/. . 
m lr 

(13) 

In the broken symmetry phase we have 

f2 = mT21g2, 

-(Ao/g2)mT2 = - AOf02 + XON(4r() 
-1 A2 

log 2 
m 

ll 

+ g’N(4rr) 
-1 A2 log 2 - g2Nh 

m lr 

Now we wish to compute the dependence of the vacuum energy density, 

V, on the order parameter, f. The vacuum energy may be computed from 

e 
-i dxV = Cei i i dxp, 

0 (15) 

where gis the Lagrangian of Eq. (6). Instead of computing V directly, 

we shall evaluate afV using the result of Eq. (10). This insures a systematic 

treatment of all divergences. We obtain 

-afv = - J + <,J><,- f>. = _ J (16) 
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This expression may be integrated by considering a similar derivative 

of the mass equation for mlT 2 Eq. (11). , We obtain 

( 1 + ( A0 + g2)N(4a)-‘(m rr2)-i)afmT2 = 2 f(Ao + g2) (17) 

Combining Eqs. (16), (121, and (17), the derivative of the vacuum energy 

becomes 

a,V = J = f(m 2 
TT - g2f2) 

(18) 

(A, + g2)-' + N(4n)-I) afmn2 - g2f3 

Equation (18) may be directly integrated to obtain the vacuum energy, 

V = $mr2(A0 + g2)-l + i N(4rr)-lm 
2 

ll 
-igf4 

(19) 

+v 0 

where V. can depend on A and f o2 but not on f. 

By using our results of Eq. (111, Eq. (i21, and Eq. (19) we may study 

the phase properties of the linear O(N) gauge theory in two dimensions. 

We summarize the results in Eq. (20), 
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2 m =-Xf o2 + 3 Aof + AON(4n) -i A2 
d o 1% 2 

m ll 

+ g2N(4rr) 
-1 

2 
log -^-z - g’N/rr 

m 
Tr 

2 
m TI = - AOfO 2 + Aof + AON(41r) -1 2 

1% -+ 
m Tr 

(20) 

+ g2f2 + g2N(4rr) 
-1 A2 

to&’ 2 - g2N/rr 
m T 

J = f(m 
2 

TI - g2f2) 

v = 1-m 4(Ao + g2)-* + i N(4rr)-im 
2 

4 iT TI - $g2f4 . 

The two distinct phases occur when J = 0. The symmetric phase is determined 

by 

f =o 

2 
m =-Af o o2 + AoN(4rr) 

-1 A2 
lr log 2 

m T 

+ g2N(4a) 
-1 A2 

log 2 - g2N/r 
m iT 

2 2 
m =m cl n 

(21) 
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V = irn n4 (A, + g2P + k N(4n)-fm 
2 

T . 

The broken phase is determined by 

f2 = m,,‘/g’ 

- (A,/g’)m 2 = - AOfo2 + AoN(4n) 
-1 A2 

il 
log 2 

m TI 

+ g’N(4n) 
-1 A2 log 2 - g2N/rr 

m 
77 

(22) 

2 2 2 
mu = m 

TI 
+ (2ho - g2)f2 = 2(Ao/g2)m TI 

V = imn4(Ao + g2)-’ + $ N(4rr)-‘m 
2 

Tr 
- i mTI 41g2 

Since we are using the linear O(N) model to regularize the nonlinear O(N) 

model, we will not discuss the linear theory but proceed to a discussion 

of the nonlinear theory. We note that all expressions we have used are 

unrenormalized. The only divergent renormalization necessary in the large 

N limit is a logarithmic divergence in fo2. 

The nonlinear O(N) gauge theory is obtained by taking the limit 

AO -m with all other parameters held fixed. One might worry that such 

a limit might reorder the large N expansion. However, we have noted 

that in two dimensions the nonlinear theory is renormalizable with only 

logarithmic divergences. Hence, the large N limit cannot be modified 
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by powers of N and no re-ordering can occur. 

The phase transition properties of the nonlinear theory may be obtained 

by taking the nonlinear limit of Eq. (21) and Eq. (22). The symmetric 

phase is determined by 

f = 0 

f02 
= N(4r) 

-1 A2 
log 2 

m 
r 

(23) 

2 2 
m =m 

0 TT 

V = i N(4r)-‘m 
2 

TT * 

This phase is characterized by a full restoration of the O(N) symmetry. 

As discussed in ref. 4, the c particle forms as a bound state of the nonlinear 

degrees of freedom. Since the full O(N)Coulomb interaction is still 

operative, only O(N) singlet bound states of o and ?; exist in the physical 

spectrum. 
6 

The broken symmetry phase is determined by 

f2 = mn2/g2 

fO 
2 = mn2/g2 + N(4ir)-’ log 4 

m lr 
(24) 

2 
m = co 

0 

v = ;N(4rr)-im 2 _ L 
Tr 4mn41g2. 
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In this phase the c is not formed as a bound state. Only the O(N - 1) 

Coulomb interactions are operative with the remaining Coulomb interactions 

being screened. The physical states are O(N - 1) singlet bound states 

of ;;. The broken symmetry phase avoids Coleman’ s theorem7 as the 

Higgs mechanism does not permit the existence of Goldstone bosons. 

We must now discuss the stability of the two phases to see the range 

of couplings where each phase can exist and the character of the phase 

transition. We introduce a renormalized coupling constant, h, through 

the relation 

N(4r)-l/h = fo2 
2 

- N(4rr) 
-1 

log L 
M2 

where M2 is a normalization scale and define the fine structure constant, 

a = g2Ni4ir. Equations (23) and (34) become 

a) symmetric phase 

1 M2 - = log 2 or m 
2 

h 
= M2e-llh 

T 
m TI 

(25) 

V = $ N(4n)-* m 2 
il 

b) broken symmetry phase 

(26) 

V = ;N(4rr)-i{m 2 -+m,,l/u}. 
TI 
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The symmetric phase can exist for all values of the coupling constants. 

The broken symmetry phase can exist only if the coupling constant, h, is 

sufficiently small. Since the o-model coupling constant is directly related 

to the mass in the symmetric phase, we consider the phase properties 

of the theory expressed in terms of this mass. We denote the pi masses 

in the symmetric and broken phases by ms 
2 

and m b2 respectively. As 

mentioned above we use m s‘ to parametrize the theory in both phases. In 

Figure 2 we plot the n masses in each phase for different values of the 

fine structure constant. In Figure 3 we plot the vacuum energy for a fixed 

value of the fine structure constant. In Figure 4, we plot the phase 

transition line in coupling constant space. 

By examining Figure 2, we see that only the symmetric phase (I) 

can exist for m 2 
S 

> de. For ms2 < u/e, the broken symmetry phase can 

also exist with two possible branches (II, III). As we decrease the gauge 

coupling constant (a +b - c), the region where the broken phase can exist 

is restricted to smaller values of m s2 or equivalently smaller values of the 

coupling constant h. When the gauge coupling constant vanishes (a = O), 

only the symmetric phase can exist in agreement with the discussions of 

ref. 3 and ref. 4. 

Although two broken symmetry phases can exist for ms2 < c~/e F. 368 (Y, 

the phase transition does not occur until ms‘ s . 321 cy,as seen in Fig, 3. 

For small ms2 (5 , 321 (~1, the stable phase is the larger mass broken 

symmetry phase (III). The vacuum energy is, of course, continuous through 
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the phase transition. However both m 
2 

and f2 are discontinuous which 
TI 

indicates that it is a first order phase transil Son. In Figure 4 we plot the 

phase transition line in coupling constant space where the region A is the 

symmetric phase and region B is the broken symmetry phase. 

In this paper we have studied the phase transition properties of a 

nonlinear O(N) c-model with gauge interactions. When studied in the large 

N limit the theory exhibits a first order phase transition. The symmetric 

phase is characterized by the generation of a bound state u particle 

degenerate with the TT’ s and all physical states being O(N) singlet bound 

states of o and r’s,. The broken symmetry phase is characterized by a 

residual O(N - 1) symmetry. The o-bound states are not formed and all 

physical states are O(N - 1) singlet bound states. The Higgs mechanism 

avoids the necessity of Goldstone bosons and stabilizes the broken symmetry 

phase in two dimensions. 

These results indicate that the longitudinal dynamics of the gluon 

fields in the transverse lattice theory of Bardeen and Pearsoni is rich 

enough to support a phase transition in the quark-gluon theory as would be 

expected in 4 + E dimensions or if the number of quarks were to be 

sufficiently large as to destabilize the confinement phase. The phase transition 

properties of the full gauge theory are of course much more complex than 

the simple model studied in this paper. We do think that the results of 

this paper do shed some light on the mechanisms which operate in a gauge 

theory. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

FIGURE CAPTIONS 

Diagrams summed in Hartree calculation: (a) tadpole, 

(b) cactus, (c) rainbow. 

r, masses in the symmetric phase (I) and broken symmetry 

phases (II, III) as a function of mass in symmetric phase for 

(a) cy = 1, (b) cy = i/2, (C)(Y = i/4. 

Vacuum energy as a function of mass in symmetric phase 

for symmetric phase (I) and broken symmetry phases (II, III), 

Phase diagram in terms of coupling constants for symmetric 

phase (A) and broken symmetry phase (B). 



FIG. la 

FIG. lb 

FIG. Ic 



4.c 

3.( 

mE 

2.c 

I.C 

0 

t t I t 1 t 

Fig. 2 

.I .4 .5, .6 



‘-.3 

74 

Fig. 3 

.I .2 .3 2 .4 .5 .6 
“S 



Fig. 4 

a 

I I I 
WI 0 


